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Semidefinite Programming (SDP)

Inequality form:

min cTx

s.t. F (x) � 0

where F (x) = F0 + x1F1 + . . .+ xnFn, Fi ∈ Sp×p.

Standard form:

min tr(CX)

s.t. X � 0

tr(AiX) = bi, i = 1, . . . ,m

where Ai ∈ Sn×n, and C ∈ Sn×n.
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• The inequality & standard forms can be shown to be equiv.

• F (x) � 0 is commonly known as a linear matrix inequality (LMI).

• An SDP with multiple LMIs

min cTx

s.t. Fi(x) � 0, i = 1, . . . ,m

can be reduced to an SDP with one LMI since

Fi(x) � 0, i = 1, . . . ,m ⇔ blkdiag(F1(x), . . . , Fm(x)) � 0

where blkdiag is the block diagonal operator.
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Example: Max. eigenvalue minimization

Let λmax(X) denote the maximum eigenvalue of a matrix X .

Max. eigenvalue minimization problem:

min
x

λmax(A(x))

where A(x) = A0 + x1A1 + . . .+ xnAn.

We note that fixing x,

λmax(A(x)) ≤ t ⇐⇒ A(x)− tI � 0

Hence, the problem is equiv. to

min
x,t

t

s.t. A(x)− tI � 0
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LP as SDP

Standard LP:

min cTx

s.t. x � 0,

aTi x = bi, i = 1, . . . ,m

Let C = diag(c), & Ai = diag(ai). The standard SDP

min tr(CX)

s.t. X � 0

tr(AiX) = bi, i = 1, . . . ,m

is equiv. to the LP since X � 0 =⇒ diag(X) � 0.
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Inequality form LP

min cTx

s.t. Ax � b

is equiv. to the SDP

min cTx

s.t. diag(Ax− b) � 0

because X � 0 =⇒ Xii ≥ 0 for all i.
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Schur Complements

Let X ∈ Sn and partition

X =





A B

BT C





S = C −BTA−1B is called the Schur complement of A in X (provided A ≻ 0).

Important facts:

• X ≻ 0 iff A ≻ 0 and S ≻ 0.

• If A ≻ 0, then X � 0 iff S � 0.
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Schur complements are useful in turning some nonlinear constraints into LMIs:

Example: The convex quadratic inequality

(Ax+ b)T (Ax+ b)− cTx− d ≤ 0

is equivalent to




I Ax+ b

(Ax+ b)T cTx+ d



 � 0
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QCQP as SDP

A convex QCQP can always be written as

min ‖A0x+ b0‖
2

2
− cT

0
x− d0

s.t. ‖Aix+ bi‖
2

2
− cTi x− di ≤ 0, i = 1, . . . , L

By Schur complement, the QCQP is equiv. to

min t

s.t.

[

I A0x+ b0

(A0x+ b0)
T

c
T

0 x+ d0 + t

]

� 0

[

I Aix+ bi

(Aix+ bi)
T

c
T

i x+ di

]

� 0, i = 1, . . . , L
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Example: The second order cone inequality:

‖Ax+ b‖2 ≤ fTx+ d

If the domain is such that fTx+ d > 0, the inequality can be re-expressed as

fTx+ d−
1

fTx+ d
(Ax+ b)T (Ax+ b) ≥ 0.

By Schur complement, the inequality is equiv. to




(fTx+ d)I Ax+ b

(Ax+ b)T fTx+ d



 � 0

• This result indicates that SOCP can be turned to an SDP.
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Example: 2-norm minimization

• Consider

min
x

‖A(x)‖2

where A(x) = A0 + x1A1 + . . .+ xnAn, with A1, . . . , An ∈ Rp×q.

• This problem can be reformulated as an SDP. Here is the trick:

‖A(x)‖2 ≤ t ⇐⇒ ‖A(x)‖2
2
≤ t2, t ≥ 0

⇐⇒ AT (x)A(x) � t2I, t ≥ 0

⇐⇒





tI A(x)

AT (x) tI



 � 0

• Hence the min. 2-norm problem can be written as

min
x,t

t

s.t.





tI A(x)

AT (x) tI



 � 0
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Applications of SDP

• There are many applications for SDP.

• SDP has been used to

– do robust control;

– deal with finite representation of semi-infinite constraints (like those in filter

designs);

– deal with robust problems such as robust SOCP, robust SDP, ...

– approximate a host of nonconvex quadratic optimization problems;

– handle certain advanced transceiver designs arising in MIMO communications;

– handle training problems in pattern classification;

– and many more...
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